//Remain connected with us at www.facebook.com/aegc4u, www.aegc.weebly.com, www.aegc.yolasite.com, 7415712500

Direction – ($\mathbf{Q}^{n}\mathbf{1}$ to $\mathbf{Q}^{n}\mathbf{9}$) : Use 'Maclaurians Theorem' to solve following ?

Q.1) Find the value of A,B & C in the expansion of the function log (secx) = $Ax^2 + Bx^4 + Cx^6 + ...$

- **Q.2**) Expand the function $f(x) = log_e (1 + x)$
- **Q.3**) Find first four terms in expansion of function log(1 + sinx)
- **Q.4**) Expand the function $f(x) = log_e (1 + e^x)$
- **Q.5**) Expand e^{sinx} up to the term containing x^4
- **Q.6**) Expand $e^x . cosx$
- **Q.7**) Expand e^x . sinx
- **Q.8**) Expand $\tan^{-1}x$ in ascending power of x
- **Q.9**) Expand $e^{a \sin^{-1} x}$ by Maclaurian's theorem

Direction – $(\mathbf{Q}^n \mathbf{10} \text{ to } \mathbf{Q}^n \mathbf{18})$: Use 'Taylor's Theorem' to solve following ?

Q.10) Expand sinx in power of $(x - \frac{\pi}{2})$

- **Q.11**) Show that $\log(x+h) = \log h + \frac{x}{h} \frac{x^2}{2h^2} + \frac{x^3}{3h^3} \dots$
- **Q.12**) Expand $2x^3 + 7x^2 + x 1$ in power of (x 2)
- **Q.13**) Expand $2 + x^2 3x^5 + 7x^6$ in powers of (x 1),
- Q.14) Find the Taylor's series expansion of the function $f(x) = \log \cos x$ about the point $\frac{\pi}{3}$
- Q.15) Expand $\tan(x + \frac{\pi}{4})$ as far as the term x^4 & evaluate $\tan 46.5^\circ$ up to four significant fig. digit
- Q.16) Expand $\log_e x$ in power of (x 1) & hence evaluate $\log_e(1.1)$ correct upto four decimal places
- **Q.17**) Compute the approximate value of $\sqrt{11}$ to four decimal places by taking the first five terms as an approximate Taylor's expansion
- Q.18) Use Taylor's theorem to prove that

$$\tan^{-1}(x+h) = \tan^{-1}x + h\sin\theta \cdot \frac{\sin\theta}{1} - (h\sin\theta)^2 \frac{\sin 2\theta}{2} + (h\sin\theta)^3 \frac{\sin 3\theta}{3} - \dots + (-1)^{n-1}(h\sin\theta)^n \frac{\sin n\theta}{n} + \dots$$

Direction – $(Q^n 19 \text{ to } Q^n 22)$:Use partial differentiation in 2 variables to find Maxima & Minima

Q.19) Discuss the maximum or minimum values of the function $f(x, y) = x^3 - 4xy + 2y^2$.

- **Q.20**) Discuss the maxima and minima of the function $x^3 + y^3 3axy$.
- **Q.21**) Discuss the maximum or minimum value of $u = x^3y^2(1 x y)$

Q.22) Prove that the rectangular solid of maximum volume which can be inscribed in a sphere is a cube.

Direction – ($Q^n 23$ to $Q^n 25$):Use Center of Curvature & Radius of curvature to solve following ?

- **Q.23**) Find radius of curvature of $y = 4 \sin x \sin 2x$ at $x = \frac{\pi}{2}$
- **Q.24**) Find the coordinates of the center of curvature for the point (x,y) of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
- **Q.25**) Find the center of curvature at the point (1,-1) of the curve $y = x^3 6x^2 + 3x + 1$. Hence find the equation of the circle of curvature at this point?

Classes on ED, Mechanics, M1, M2, M3, SOM, NA, CONTROL, DSP & other GATE oriented Engg. Subjects By :- Agnihotri sir, B. E. (Hons), M.Tech. (7415712500) B.T.I. Road Sherpura, Vidisha pg 1 //Remain connected with us at www.facebook.com/aegc4u, www.aegc.weebly.com, www.aegc.yolasite.com, 7415712500

LEIBNITZ'S THEOREM: If u and v are any two functions of x such that all their desired differential coefficients exist, then the n th differential coefficient of their product is given by

$$D^{n}(uv) = (D^{n}u)v + nD^{n-1}uDv + \frac{n(n-1)}{2!}D^{n-2}uD^{2}v + \dots + nDuD^{n-1}v + uDv.$$

Example.

If $y = a\cos(\log x) + b\sin(\log x)$, show that $x^2y_2 + xy_1 + y = 0$ and $x^2y_{n+2} + (2n-1)xy_{n+1} + (n^2+1)y_n = 0$.

Solution.

Let $y = a\cos(\log x) + b\sin(\log x)$,

$$y_1 = -a\sin(\log x) \cdot \frac{1}{x} + b\cos(\log x)\frac{1}{x}$$
 or $xy_1 = -a\sin(\log x) + b\cos(\log x)$

Now again differentiating both sides, we get

$$xy_{2} + y_{1} = -a\cos(\log x) \cdot \frac{1}{x} - b\sin(\log x) \frac{1}{x}$$

or $x^{2}y_{2} + xy_{1} = -[a\cos(\log x) + b\sin(\log x)]$
or $x^{2}y_{2} + xy_{1} = -y$
or $x^{2}y_{2} + xy_{1} = -y$

Again differentiating both sides in times by Leibnitz's theorem,

$$D^{n}(x^{2}y_{2}) + D^{n}(xy_{1}) + D^{n}(y) = 0.$$

or $x^{2}D^{n}y_{2} + nDx^{2}D^{n-1}y_{2} + \frac{n(n-1)}{2}D^{2}x^{2}D^{n-2}y_{2} + xD^{n}y_{1} + nD^{n+1}y_{1} + y_{n} = 0$
or $x^{2}y_{n+2} + 2nxy_{n+1} + n(n-1)y_{n} + xy_{n+1} + ny_{n} + y_{n} = 0$
or $x^{2}y_{n+2} + (2n-1)xy_{n+1} + (n^{2}+1)y_{n} = 0.$

Direction – (Qⁿ 26 to Qⁿ 28): Solve Using Leibnitz's Theorem ? Q.26) If $y = \sin(m \sin^{-1} x)$, prove that $(1-x^2)y_2 - xy_1 + m^2 y = 0$ and deduce that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 - m^2)y_n = 0$. Q.27) Find y_n if $y = x^{n-1} \log x$. Hint. Q.28) Find $(y_n)_0$, if $y = \sin(a \sin^{-1} x)$. We have $D^{n-2}(xy_1) = (n-1)D^{n-1}y + D^{n-1}x^{n-1}$. $\therefore xy_n + (n-1)y_{n-1} = (n-1)y_{n+1} + (n-1)!$ or $y_n = \frac{(n-1)}{x}$

Classes on ED, Mechanics, M1, M2, M3, SOM, NA, CONTROL, DSP & other GATE oriented Engg. Subjects By :- Agnihotri sir, B. E. (Hons), M.Tech. (7415712500) B.T.I. Road Sherpura, Vidisha pg 2

Here, $\left(\frac{dy}{dx}\right)_{\left(\frac{3a}{2},\frac{3a}{2}\right)} = -1$

Again, differentiating (1), w.r.t x, we get

$$\frac{d^2 y}{dx^2} = \frac{(y^2 - ax)\left(a\frac{dy}{dx} - 2x\right) - (ay - x^2)\left(2y\frac{dy}{dx} - a\right)}{(y^2 - ax)^2}$$

$$\implies \left(\frac{d^2 y}{dx^2}\right)_{\left(\frac{3a}{2},\frac{3a}{2}\right)} = -\frac{32}{3a}$$

Now, the Radius of curvature at $\left(\frac{3a}{2}, \frac{3a}{2}\right)$ is given by $\rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\overline{2}}}{\frac{d^2y}{dx^2}}$

$$\Rightarrow (\rho)_{\left(\frac{3a}{2},\frac{3a}{2}\right)} = \frac{\left[1 + (-1)^2\right]^{\frac{3}{2}}}{\left(-\frac{32}{3a}\right)} = -\frac{2^{\frac{3}{2}}}{32} \cdot 3a = -\frac{2\sqrt{2}}{32} \cdot 3a$$

$$\Rightarrow (\rho)_{\left(\frac{3a}{2},\frac{3a}{2}\right)} = \frac{3\sqrt{2}}{16}a$$
 (numerically... since radius cannot be negative)

Classes on ED, Mechanics, M1, M2, M3, SOM, NA, CONTROL, DSP & other GATE oriented Engg. Subjects By :- Agnihotri sir, B. E. (Hons), M.Tech. (7415712500) B.T.I. Road Sherpura, Vidisha pg. 3